您的位置 首页 > 家电故障

溴化锂空调能耗_溴化锂空调参数

1.双效溴化锂的工作原理能说一下吗?用下面这个图解说一下可以吗,萌新求问。

2.溴化锂吸收式制冷空调技术实用手册 全内容 知道的请告诉我 谢谢

3.热水型溴化锂制冷机的高温型热源水温度

4.在空调工程中溴化锂吸收式制冷机组特点有哪些?

5.溴化锂制冷剂和氨制冷剂有什么区别?工作原理有什么不同

6.中央空调溴化锂处理

溴化锂空调能耗_溴化锂空调参数

冷却水的进口温度不是造成结晶的直接原因,直接原因是因为冷却水温度过低,造成的溶液浓度升高、溶液温度降低。

所以如果温度过低,需要减少冷却水的流量,控制冷却水的出口温度不要低于30℃,最好也不要高于40℃,这是比较简便的操作方法jiashi2008点com

双效溴化锂的工作原理能说一下吗?用下面这个图解说一下可以吗,萌新求问。

直燃型溴化锂吸收式中央空调器组是一种主要以燃气或燃油为能源,用动力驱动的空调系统。主要由燃气燃烧室、高温发生器、低温发生器、冷凝器、蒸发器、溶液泵、冷却塔风机、燃烧器风机、冷却水泵、冷冻水泵、溶液泵、制冷剂泵等组成。其外形如图5-25所示。

图5-25 直燃型溴化锂吸收式中央空调器

工作时,高温发生器内的溴化锂稀溶经燃烧器加热后,产生出水蒸汽;水蒸汽再对低温发生器内溴化锂溶液进行加热,即产生更多的水蒸汽,然后水蒸汽进入冷凝器冷凝成水;水经节流后进入蒸发器吸收热量变成蒸汽,低压水蒸汽被吸收器内的溴化锂溶液吸收后,使其溴化锂溶液变稀,并由溶液泵送入低温发生器,再产生水蒸汽,如此不断循环。冷凝器内的冷却水来自冷却器,蒸发器内的冷冻水来自空调房间的风机盘管机组。

直燃型溴化锂吸收式冷(热)水机组是在蒸汽型溴化锂冷水机组的基本上,增加热源设备而发展起来的,因此除了具有蒸汽型溴化锂固有的特点外,最突出的特点是由于制冷主机与燃烧设备一体化,可根据负荷变化实现燃烧调节,提高了能量的利用率。

溴化锂吸收式制冷空调技术实用手册 全内容 知道的请告诉我 谢谢

双效溴化锂的工作原理如下:

1、? 在说本图之前简单说一下空调的原理:就是制冷剂通过相态变化,在相态变化过程中吸热放热实现制冷和制热。

2、? 溴化锂机组有两个循环,一个叫吸收循环(左侧高低压发生器、吸收器、热交换器),一个叫制冷循环(右侧冷凝器和蒸发器)。

3、? 高压发生器的水蒸气进入低压发生器,加热低压发生器内的稀溶液。

4、? 低压发生器(压力约0.075MPa)及高压发生器内的水蒸气在冷凝器内汇合并经冷却水冷却成水。

5、? 被冷却后的水进入真空蒸发器(压力约0.008Mpa),吸收冷冻水的热量进行蒸发变成水蒸气。

6、? 水蒸气进入吸收器,被浓溶液吸收成为稀溶液,经过溶液泵送至高压发生器和低压发生器内。

7、? 其中稀溶液和浓溶液在换热器内进行热量交换,其作用为:一方面降低浓溶液温度,减少吸收器的冷却水量;另一方面提升稀溶液浓度,减少热源使用。

8、? 特别提醒,冷却水先进入吸收器,出来后再进入冷凝器,两个是串联关系。

双效溴化锂机组运行注意事项机组特点:

1.真空度保证。稍有空气进入,冷量降低明显。目前厂家一般设置自动抽气装置。

2.防止结晶。浓度过低过高均会结晶,进入吸收器的冷却水温度不低于20℃。

3.防腐蚀:一般加入缓蚀剂。

4.加入活性剂提高制冷效率。

5.制冷量会明显衰减。

关于溴化锂吸收式机组:

1.一般需要厂家保证上述各方面参数稳定。

2.目前该类型机组使用较少,一般需要燃气价格低于电价三倍,在经济上才有优势。

3.主要应用在有预热情况下。

4.主要品牌有开利、远大、荏源等。

热水型溴化锂制冷机的高温型热源水温度

溴化锂吸收式制冷空调技术实用手册 您想读这本书吗?

作者: 戴永庆 出版社: 机械工业出版社

译者: 丛书名:

出版日期: 上架日期:2006-1-20 17:45:00

ISBN:7111072286 页数: 版次:1-3

开本:16 装帧:

目录 前言 物理量符号名称及单位 概论 第1篇基础知识 第1章基础理论 1.1理论知识 1.1.1工质的状态参数 1.1.2理想气体状态方程式 1.1.3热力学第一定律 1.1.4传热学基本公式 1.1.5流体力学基本公式 1.1.6直燃式溴化锂吸收式机组的燃料 1.2溴化锂溶液的性质 1.2.1溴化锂溶液的物理性质 1.2.2溴化锂溶液的腐蚀性和缓蚀剂 1.2.3溴化锂溶液的热力图表 1.3溴化锂吸收式制冷循环 1.3.1单效溴化锂吸收式制冷循环 1.3.2单效溴化锂吸收式制冷循环在h-ξ图上的表示 1.3.3双效溴化锂吸收式制冷循环 1.3.4溴化锂吸收式热泵原理 1.4溴化锂吸收式制冷循环的热平衡计算和性能指标 1.4.1溴化锂吸收式制冷循环的热平衡计算 1.4.2溴化锂吸收式制冷循环的性能指标 第2章溴化锂吸收式制冷机型式与结构 2.1溴化锂吸收式制冷机分类 2.1.1按用途分类 2.1.2按驱动热源分类 2.1.3按驱动热源的利用方式分类 2.2蒸汽型溴化锂吸收式冷水机组 2.2.1蒸汽型冷水机组主要部件和结构型式 2.2.2双效蒸汽型冷水机组的溶液循环流程 2.2.3蒸汽型冷水机组主要部件的结构 2.3直燃型溴化锂吸收式冷热水机组 2.3.1制冷暖专用机 2.3.2同时制冷和暖机 2.3.3组合型溴化锂吸收式冷热水机组 2.4热水型溴化锂吸收式冷水机组 2.4.1单效热水型溴化锂吸收式冷水机组 2.4.2二段热水型溴化锂吸收式冷水机组 2.4.3二级热水型溴化锂吸收式冷水机组 2.5热泵型溴化锂吸收式机组 2.5.1第一类溴化锂吸收式热泵机组 2.5.2第二类溴化锂吸收式热泵机组 2.6溴化锂吸收式机组的自动抽气装置 2.6.1自动抽气装置的作用与原理 2.6.2几种常用的自动抽气装置的型式 第3章溴化锂吸收式机组的配套设备 3.1屏蔽泵 3.1.1屏蔽泵的选用要求 3.1.2屏蔽泵的结构 3.1.3屏蔽泵的工作原理 3.1.4SS型屏蔽泵的主要技术参数 3.1.5PN2型屏蔽泵 3.1.6L型屏蔽泵的主要技术参数 3.2真空泵 3.2.1真空泵的选用要求 3.2.2真空泵的结构 3.2.3真空泵的工作原理 3.2.4真空泵的主要技术参数 3.3真空阀 3.3.1真空阀的选用要求 3.3.2真空隔膜阀 3.3.3真空管道阀 3.3.4真空球阀 3.3.5真空角阀 3.3.6真空电磁阀 3.4真空测量仪表 3.4.1U形管绝对压力计 3.4.2U形管水银差压计 3.4.3旋转式麦氏真空计 3.4.4薄膜式真空压力计 3.5燃烧器 3.5.1燃烧器的选用要求 3.5.2燃油燃烧器 3.5.3燃气燃烧器 第4章溴化锂吸收式机组的性能 4.1外界条件变化对机组性能的影响 4.1.1冷水出口温度的影响 4.1.2冷却水进口温度的影响 4.1.3冷却水量的影响 4.1.4冷水量的影响 4.1.5热源温度的影响 4.2其他影响性能的因素 4.2.1污垢系数的影响 4.2.2不凝性气体的影响 4.2.3溶液循环量的影响 4.2.4表面活性剂的影响 4.2.5冷剂水污染的影响 4.3部分负荷时的性能 4.3.1部分负荷时制冷量与燃料耗量的关系 4.3.2部分负荷时的性能系数 4.3.3部分负荷时供热量与燃料耗量的关系 4.4性能变化汇总 第5章溴化锂吸收式机组的自动控制 5.1安全保护系统 5.1.1安装位置及设定范围 5.1.2主要安全保护元件 5.2能量调节系统 5.2.1制冷(热)量调节 5.2.2溶液循环量调节 5.2.3能量调节的主要元件 5.3程序运行系统 5.3.1起动流程图 5.3.2停机流程图 5.4微机控制系统 5.4.1微机控制系统的功能 5.4.2可编程序控制器(PLC) 5.4.3触摸控制屏 第2篇运行维护 第6章溴化锂吸收式机组的安装、调试与运行管理 6.1溴化锂吸收式机组的安装 6.1.1机组整体就位与安装 6.1.2机组分体就位与安装 6.2溴化锂吸收式机组的调试与运行 6.2.1调试前的准备 6.2.2机组调试 6.2.3机组运行 6.3溴化锂吸收式机组的运行管理 6.3.1抽气系统管理 6.3.2气密性管理 6.3.3冷剂水管理 6.3.4溴化锂溶液管理 6.3.5冷/热水和冷却水管理 6.3.6冷却水低温时的运行管理 6.3.7部分负荷的运行管理 6.3.8冷热切换运转管理 6.3.9特殊情况下的运行管理 6.3.10燃烧管理 6.3.11自控元件与电气设备的管理 第7章溴化锂吸收式机组的维护保养故障排除与检修 7.1溴化锂吸收式机组的维护保养 7.1.1保养要求 7.1.2短期停机保养 7.1.3长期停机保养 7.1.4定期检查与更换 7.2溴化锂吸收式机组的常见故障及处理 7.2.1结晶 7.2.2结冰 7.2.3冷剂水污染 7.2.4抽气能力低下 7.2.5突然停机 7.2.6性能低下及对策 7.2.7安全装置动作时的处理 7.2.8燃烧器故障处理 7.2.9故障处理汇总表 7.3溴化锂吸收式机组的检修 7.3.1真空阀门的检修 7.3.2视镜的检修 7.3.3屏蔽泵的检修 7.3.4真空泵的检修 7.3.5燃烧器的检修 7.3.6自控元件与电气设备的检修 7.3.7抽气系统的检修 7.3.8传热管的检查、清洗与更换 7.3.9机组的清洗 7.4溴化锂吸收式制冷系统附属设备的管理及保养 7.4.1冷却塔 7.4.2水泵 7.4.3空调器 7.5事故分析示例 7.5.1机组安装不水平 7.5.2冷剂水污染 7.5.3熔晶管焊接泄漏 7.5.4传热管泄漏 7.5.5蒸汽盖隔板垫片损坏 7.5.6点火失败 7.5.7溴化锂吸收式机组检修 第3篇工程应用 第8章空调用溴化锂吸收式制冷系统的设计与应用 8.1溴化锂吸收式制冷机组的工程应用特点 8.2溴化锂吸收式制冷机组的配置 8.3空调用溴化锂吸收式制冷机组的系统 8.3.1热水型溴化锂吸收式冷水机组的热水系统 8.3.2蒸汽型溴化锂吸收式冷水机组的蒸汽系统 8.3.3直燃型机组的燃料贮存与供应系统 8.3.4直燃型机组的排烟系统 8.3.5空调用冷、热水系统 8.3.6空调用冷却水系统 8.4溴化锂吸收式制冷系统附属设备的选用 8.4.1冷却塔 8.4.2水泵 8.4.3换热器 8.4.4水处理设备 8.4.5贮液罐 8.4.6贮油罐 8.4.7油泵 第9章溴化锂吸收式制冷系统的机房设计 9.1机房位置及技术要求 9.1.1机房的位置选择与组成 9.1.2机房设计的技术要求 9.1.3直燃型机组机房的防火、防爆、防静电要求 9.2溴化锂吸收式制冷系统的机房设备布置 9.2.1设备布置原则 9.2.2溴化锂吸收式制冷机组布置要求 9.2.3冷却水系统的设备布置 9.2.4冷、热水系统的设备布置 9.2.5燃油系统的设备布置 9.2.6燃气系统燃气报警器的布置 9.2.7其他附属设备布置 9.3机房职业安全卫生设计 9.3.1机房的防火、防爆、防静电设计 9.3.2职业卫生和安全防护 9.3.3消声、隔振和隔声 第10章溴化锂吸收式机组的系统管道设计 10.1管道设计基础知识 10.1.1管道分类 10.1.2管道压力等级及管径系列 10.1.3管道设计的任务和条件 10.2管径和管道压力降计算 10.2.1管径和管道压力降计算的一般要求 10.2.2管径选择 10.2.3管道压力降计算 10.3溴化锂吸收式制冷系统输送介质及材料选用 10.3.1输送介质种类、性质及压力、温度范围 10.3.2管道选用 10.4机房内管路安装设计 10.4.1安装方式和要求 10.4.2机房主要设备的配管 10.4.3过热蒸汽的减温减压设施 10.4.4蒸汽调节阀组 10.4.5蒸汽和凝水管的布置 10.4.6疏水器 10.4.7安全阀 10.4.8除污及排气设施 10.4.9燃油、燃气管路安装 10.4.10管道系统阀门选用与安装 第11章溴化锂吸收式制冷技术在空调工程中的应用实例 11.1图例 11.2热水型溴化锂吸收式制冷空调工程应用实例 11.2.1青岛黄金广场 11.3蒸汽型溴化锂吸收式制冷空调工程应用实例 11.3.1铁路上海站主站屋 11.3.2宾馆 11.3.3银桥大厦 11.3.4中北大酒店 11.4燃油型溴化锂吸收式制冷空调工程应用实例 11.4.1证券大厦 11.4.2中国新纪元物质流通中心 11.4.3北京民航京瑞大厦 11.5燃气型溴化锂吸收式制冷空调工程应用实例 11.5.1上海煤气公司美华大楼 11.5.2南新雅饮食城 11.5.3上海图书馆新馆 11.5.4上海市闸北区综合信息中心 11.5.5上海通用汽车公司 11.5.6上海复兴文娱中心 第4篇产品特性 第12章国内外澳化锂吸收式制冷机主要生产厂商产品介绍 12.1上海一冷开利空调设备有限公司 12.2江苏双良特灵溴化锂制冷机有限公司 12.3大连三洋制冷有限公司 12.4远大空调有限公司 12.5约克国际(北亚)有限公司 12.6上海田熊冷热设备有限公司 12.7上海浦东溴化锂制冷机厂 12.8上海申马集团空调机有限公司 12.9开封通用机械厂 12.10烟台荏原空调设备有限公司 12.11青岛LG-同和制冷设备有限公司 12.12浙江联丰集团公司 12.13杭州溴化锂制冷机厂 12.14广东莱孚重工机械有限公司 12.15上海华源前进制冷空调公司 12.16常州溴化锂制冷机厂 12.17山东水龙王集团空调设备有限公司 12.18永升集团泰兴溴化锂制冷机厂 12.19湖南宏大空调设备有限公司 12.20山东早春集团股份有限公司 第5篇参考资料 第13章溴化锂吸收式机组标准 13.1概述 13.2型号编制方法规定 13.2.1JB/T7247《溴化锂吸收式冷水机组》规定 13.2.2JB/T8055《直燃型溴化锂吸收式冷、热水机组》规定 13.3加热源规定 13.4性能指标和工况规定 13.4.1性能指标和名义工况规定 13.4.2机组工作范围 13.4.3部分负荷性能规定 13.4.4污垢系数对性能的影响 13.4.5机组的噪声 13.5机组的强度和气密性 13.6燃烧设备的性能 13.7机组的安全保护规定 13.8质量和安全检验 13.9强度和气密性试验 13.10控制调节和安全保护元件试验 13.10.1元件动作试验 13.10.2绝缘电阻和耐电压试验 13.11噪声测定 13.12阻力测定 13.13燃烧设备试验 13.13.1额定燃烧量试验 13.13.2点火试验 13.13.3燃烧设备安全装置动作试验 13.14烟气黑度测定 13.15制冷量和供热量测量 13.15.1制冷量和供热量的测量方法 13.15.2蒸汽流量的测量 13.15.3本体散热损失系数的计算方法 13.15.4测量仪表 13.15.5试验报告 第14章相关法规、规范、标准 14.1溴化锂吸收式机组设计、安装、施工及验收规范 14.1.1设计规定 14.1.2安装、施工和验收规定 14.2燃料 14.2.1城市燃气安全管理规定 14.2.2上海市燃气管理条例 14.2.3GB50028—1993《城镇燃气设计规范》 14.2.4GBJ74—《石油库设计规范》 14.2.5GB50156—1992《小型石油库及汽车加油站设计规范》 14.2.6GB50041—1992《锅炉房设计规范》 14.2.7DBJ08—73—1998《民用建筑锅炉房设置规定》 14.2.8燃油标准 14.2.9燃气标准 14.3冷却水、水质、冷却塔 14.3.1GB50050—1995《工业循环冷却水处理设计规范》 14.3.2DB31/T143—1994《宾馆、饭店空调用水及冷却水水质标准》 14.3.3JB/T7247、JB/T8055、JBJ10规定的水质标准 14.3.4日本的水质标准 14.3.5冷却塔标准 14.3.6冷却塔安装规定 14.4环境保护和大气污染防治 14.4.1GB3095—1996《中华人民共和国环境空气质量标准》 14.4.2GB162—1996《中华人民共和国大气污染物综合排放标准》 14.4.3GB13271—1991《锅炉大气污染物排放标准》 14.5噪声防治 14.5.1GB3096—1993《城市区域环境噪声标准》 14.5.2GBJ87—1985《工业企业噪声控制设计规范》 14.5.3GB12348—1990《工业企业厂界噪声标准》 14.6消防 14.6.1《中华人民共和国消防法》 14.6.2GBJ16—1987《建筑设计防火规范(19年版)》 14.6.3GB50045—1995《高层民用建筑设计防火规范(19年版)》 14.7节约能源 14.7.1《中华人民共和国节约能源法》 14.7.2《上海市节约能源条例》 14.7.3《山东省节约能源条例》 附录 附录A国内外有关生产溴化锂吸收式制冷机厂商简介 附录B国内外溴化锂吸收式制冷机相关配套设备厂商简介 附录C常用气体、液体物性图表和单位换算表 附表C-1饱和水与饱和水蒸气表(按温度排列) 附表C-2饱和水与饱和水蒸汽表(按压力排列) 附表C-3干空气的物理性质 附表C-4水的物理性质 附表C-5过热水蒸气的热物理性质 附表C-6烟气的热物理性质 附表C-7制冷常用单位换算 附图溴化锂溶液h-ξ图 参考文献

在空调工程中溴化锂吸收式制冷机组特点有哪些?

100℃以上。根据查询制冷与空调设备安装得知,热水型溴化锂吸收式制冷机组依据热水类型可分为高温水型(温水入口温度超过100℃)和低温水型(温水入口温度低于100℃)。热水型溴化锂吸收式冷水机组是一款冷水机,一般根据设计负荷、热水流量、热水温度以及安装场地条件等综合因素确定机组型号及参数。

溴化锂制冷剂和氨制冷剂有什么区别?工作原理有什么不同

在空调工程中,溴化锂吸收式制冷机组特点有哪些?下面中达咨询为大家详细介绍一下,以供参考。

在空调工程中,一直惯用的制冷机组多为用蒸汽压缩式制冷方式,而压缩式制冷用的制冷剂为卤代烃(即氟利昂族)。

近些年来,由于世界各国进人科技飞速发展和先进工业迅速增长的年代,同时出现的对地球生态的破坏和大气的污染也更加严重。除了对河流湖泊的污染、土地的污染、生态环境的破坏,同时存在正在迅速发展的而被大量制造和使用的氟利昂制冷剂,也是威胁大气环境的又一杀手。氟利昂会造成大气臭氧层的破坏,使大气臭氧层变薄,或出现孔洞,紫外线会在无臭氧层的保护时,直接照射在人们的皮肤上,使人患上皮肤癌等皮肤疾病,给人类带来灾害。因此,许多国家规定了在若干年后不得使用氟利昂制冷剂,因此溴化锂吸收式制冷将会被广泛应用在空调制冷系统中。

溴化锂吸收式制冷机组的特点:

(1)溴化锂吸收工质对人和环境无污染。

(2)适用于有热源和产生废热的区域和条件。

(3)除冷剂和溶液泵外,基本无运转部件,因此运行平稳、无大振动、噪声低。

(4)因溴化锂溶液腐蚀性大,因此要求容器和盘管应用耐腐蚀的材料制作。

(5)冷却水用量比压缩式制冷机大。

(6)压缩式制冷机组节省电能,易于管理和维护,可自动调整溶液的浓度。

(7)设备体积大,耗用金属量多,占冷冻站的面积多。

(8)用直燃型时,需增加燃气(或燃油)系统,并设有自动监视、安全防护等装置。

(9)冷却水循环系统中,与压缩式制冷机组相同,因冷却水用量的增大,可能会使冷却塔的投资费用增加。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

中央空调溴化锂处理

两者均可用于吸收式制冷。溴化锂和氨制冷吸收式制冷的基本原理相同,都是利用制冷剂气化吸热原理制冷,利用热能作为动力。

主要区别是蒸发温度不同,

氨制冷:稀氨水溶液作吸收剂,氨作制冷剂,氨蒸发温度在-33℃左右,可以达到深度制冷,可用于冷库冷冻或冷藏。

溴化锂制冷:溴化锂溶液作吸收藉,水作制冷剂,真空时水蒸发经换热器后一般用于供空调用7度左右冷冻水。

另外氨也可用于蒸汽压缩制冷,原理与氟利昂压缩制冷类似。

中央空调作为现代建筑中一个非常重要的设备,为办公楼、医院、酒店、商场等大型建筑物提供舒适的室内环境。而溴化锂处理则是中央空调系统的一种制冷方式,功能强大,效率高,受到越来越多的关注。

溴化锂制冷技术是一种非常成熟的制冷技术,通过蒸发冷却的方式,将空气中的湿度降低,从而降低温度。它的优点是节能、环保,具有高效制冷、稳定可靠、噪音低、维护方便等优势,因此广泛地应用于各种中央空调系统中。

中央空调溴化锂处理的优点:

1.节能环保:溴化锂制冷技术比传统的空调制冷技术更加节能,能够减少能源的浪费,有助于保护环境。

2.高效制冷:用溴化锂制冷技术的中央空调具有高效制冷的特点,能够快速地降低室内温度,提高空调的制冷效率。

3.稳定可靠:中央空调用溴化锂制冷技术,稳定性高,能够保持室内的温度和湿度在一定的范围内。

4.噪音低:中央空调用溴化锂制冷技术,噪音低,不会影响人们的工作和生活。

5.维护方便:中央空调用溴化锂制冷技术,维护方便,可靠性高,使用寿命长。

总之,中央空调溴化锂处理在今后的建筑空调中会有更加广泛的应用,这种制冷技术将会越来越成熟、高效,为人们创造更加宜人的室内环境。

热门文章